§ 125.137

based on the collection of multiple years of data to capture the seasonal and daily activities (e.g., spawning, feeding and water column migration) of all life stages of fish and shellfish found in the vicinity of the cooling water intake structure:

- (2) An identification of all threatened or endangered species that might be susceptible to impingement and entrainment by the proposed cooling water intake structure(s); and
- (3) A description of additional chemical, water quality, and other anthropogenic stresses on the source waterbody.
- (B) Evaluation of potential cooling water intake structure effects. This evaluation must include:
- (1) Calculations of the reduction in impingement mortality and, (if applicable), entrainment of all life stages of fish and shellfish that would need to be achieved by the technologies you have selected to implement to meet requirements under Track II. To do this, you must determine the reduction in impingement mortality and entrainment that would be achieved by implementing $_{
 m the}$ requirements §125.134(b)(2) and, for facilities without sea chests, §125.134(b)(5) of Track I at your site.
- (2) An engineering estimate of efficacy for the proposed and/or implemented technologies used to minimize impingement mortality and (if applicable) entrainment of all life stages of fish and shellfish and maximize survival of impinged life stages of fish and shellfish. You must demonstrate that the technologies reduce impingement mortality and (if applicable) entrainment of all life stages of fish and shellfish to a comparable level to that which you would achieve were you to requirements implement the in §125.134(b)(2) and, for facilities without sea chests, §125.134(b)(5) of Track I. The efficacy projection must include a sitespecific evaluation of technology(ies) suitability for reducing impingement mortality and (if applicable) entrainment based on the results of the Source Water Biological Study in paragraph (c)(2)(iii)(A) of this section. Efficacy estimates may be determined based on case studies that have been conducted in the vicinity of the cooling water in-

take structure and/or site-specific technology prototype studies.

(C) Verification monitoring plan. You must include in the Study a plan to conduct, at a minimum, two years of monitoring to verify the full-scale performance of the proposed or implemented technologies and/or operational measures. The verification study must begin at the start of operations of the cooling water intake structure and continue for a sufficient period of time to demonstrate that the facility is reducing the level of impingement mortality and (if applicable) entrainment to the level documented in paragraph (c)(2)(iii)(B) of this section. The plan must describe the frequency of monitoring and the parameters to be monitored. The Director will use the verification monitoring to confirm that you are meeting the level of impingement mortality and entrainment reduction required in §125.134(c), and that the operation of the technology has been optimized.

§ 125.137 As an owner or operator of a new offshore oil and gas extraction facility, must I perform monitoring?

As an owner or operator of a new offshore oil and gas extraction facility, you will be required to perform monitoring to demonstrate your compliance with the requirements specified in \$125.134 or alternative requirements under \$125.135.

- (a) Biological monitoring. (1)(i) Fixed facilities without sea chests that choose to comply with the Track I requirements in §125.134(b)(1)(i) must monitor for entrainment. These facilities are not required to monitor for impingement, unless the Director determines that the information would be necessary to evaluate the need for or compliance with additional requirements in accordance with §125.134(b)(4) or more stringent requirements in accordance with §125.134(d).
- (ii) Fixed facilities with sea chests that choose to comply with Track I requirements are not required to perform biological monitoring unless the Director determines that the information would be necessary to evaluate the need for or compliance with additional requirements in accordance with

§125.134(b)(4) or more stringent requirements in accordance with §125.134(d).

- (iii) Facilities that are not fixed facilities are not required to perform biological monitoring unless the Director determines that the information would be necessary to evaluate the need for or compliance with additional requirements in accordance with §125.134(b)(4) or more stringent requirements in accordance with §125.134(d).
- (iv) Fixed facilities with sea chests that choose to comply with Track II requirements in accordance with §125.134(c), must monitor for impingement only. Fixed facilities without sea chests that choose to comply with Track II requirements, must monitor for both impingement and entrainment.
- (2) Monitoring must characterize the impingement rates and (if applicable) entrainment rates) of commercial, recreational, and forage base fish and shellfish species identified in the Source Water Baseline Biological Characterization data required by 40 CFR 122.21(r)(4), identified in the Comprehensive Demonstration Study required by §125.136(c)(2), or as specified by the Director.
- (3) The monitoring methods used must be consistent with those used for the Source Water Baseline Biological Characterization data required in 40 CFR 122.21(r)(4), those used by the Comprehensive Demonstration Study required by §125.136(c)(2), or as specified by the Director. You must follow the monitoring frequencies identified below for at least two (2) years after the initial permit issuance. After that time, the Director may approve a request for less frequent sampling in the remaining years of the permit term and when the permit is reissued, if supporting data show that less frequent monitoring would still allow for the detection of any seasonal variations in the species and numbers of individuals that are impinged or entrained.
- (4) Impingement sampling. You must collect samples to monitor impingement rates (simple enumeration) for each species over a 24-hour period and no less than once per month when the cooling water intake structure is in operation.

- (5) Entrainment sampling. If your facility is subject to the requirements of 125.134(b)(1)(i), or if your facility is subject to §125.134(c) and is a fixed facility without a sea chest, you must collect samples to monitor entrainment rates (simple enumeration) for each species over a 24-hour period and no less than biweekly during the primary period of reproduction, larval recruitment, and peak abundance identified during the Source Water Baseline Biological Characterization required by 40 CFR 122.21(r)(4) or the Comprehensive Demonstration Study required in $\S125.136(c)(2)$. You must collect samples only when the cooling water intake structure is in operation.
- (b) Velocity monitoring. If your facility uses a surface intake screen systems, you must monitor head loss across the screens and correlate the measured value with the design intake velocity. The head loss across the intake screen must be measured at the minimum ambient source water surface elevation (best professional judgment based on available hydrological data). The maximum head loss across the screen for each cooling water intake structure must be used to determine compliance with the velocity requirement in §125.134(b)(2). If your facility uses devices other than surface intake screens, you must monitor velocity at the point of entry through the device. You must monitor head loss or velocity during initial facility startup, and thereafter, at the frequency specified in your NPDES permit, but no less than once per quarter.
- (c) Visual or remote inspections. You must either conduct visual inspections or employ remote monitoring devices during the period the cooling water intake structure is in operation. You must conduct visual inspections at least weekly to ensure that any design and construction technologies required in §125.134(b)(4), (b)(5), (c), and/or (d) are maintained and operated to ensure that they will continue to function as designed. Alternatively, you must inspect via remote monitoring devices to ensure that the impingement and entrainment technologies are functioning as designed.